Aliaksei Bondarionok
A hybriD natural language parser
EffectiveSoft Ltd., Minsk, Belarus, 
lucky-one AT tut DOT by
There are many approaches to syntactical parsing including statistical and rule-based, which use different syntactical formalisms such as regular, context-free, and transformational grammars, augmented transition networks, unification-based and generalized phrase structure grammars, tree adjoining grammars [1]. The results of syntactical analysis may be used for information retrieval purposes or for language understanding tasks such as question answering or summarization. For all of the applications a parser with the maximal possible efficiency and accuracy is required. 
We present a hybrid parsing system that uses a context-dependent grammar implemented via finite-state cascades, and also makes use of statistically collected data and semantic classifier to resolve syntactical ambiguities. Finite-state cascades (FSC) proved to be one of the fastest methods for language parsing and also achieve good accuracy [2, 3]. The parsing is performed deterministically bottom-up: a cascade observes an input sequence of words from left to right non-recursively and recognizes certain elements of a sentence structure. Then the modified sequence is passed to the next cascade, and so on. After the last cascade we receive a fully or partially parsed sentence. A part-of-speech (POS) tagger which assigns a tag to each word is used preliminary to the FSC parser to form the initial sequence of words.

Grammar

A set of rules for each cascade is written by linguists. To effectively organize their work, a regular expression formalism that deals with tagged text was created. The rules are written in a regular expression style, and common regular expression operations such as concatenation, alteration, Kleine closure, etc. are supported. Conditions on words, tags, semantic categories, and dictionary look-ups are allowed. For example, the rule below describes a simple noun phrase.

	"unlike"_IN < DT NN+ > DT|JJ+ NN+ -> NP
	(1)


In this example IN, DT, NN and JJ are POS-tags provided by the tagger, “unlike” is a word condition. The “+” sign adds repetition to a token, i.e. NN+ defines one or more NN in a row. The pipe “|” is alteration, so DT|JJ will match on either DT or JJ, and finally DT|JJ+ means a sequence of DT and JJ in any order. When applied this rule converts a sequence of words captured in the triangle brackets into the non-terminal symbol NP and creates a node NP in the parsing tree. For example, the following tagged sequence would be matched: unlike_IN the_DT car_NN the_DT bicycle_NN is_VB mine_PN, and the_DT car_NN recognized as a noun group. 
A set of such rules forms a cascade. During the matching process an input chain is observed from the left to right, and a certain rule from the cascade may match it. The cascade is implemented as a set of finite state machines. We used a minimal weighted deterministic automaton [4] to determine the matched rule. During the matching process the deterministic automaton is used first to match against the input chain and its output corresponds to the matched rule. For each rule from the cascade we also build a small non-deterministic automaton. After the matched rule is recognized, the non-deterministic automaton is used to find the subchain captured in triangle brackets. The captured subchain is replaced with a non-terminal symbol, and the matching process continues from the next position.

Parsing process

The parser consists of three parts: the chunker, lexicalizer and lexicalized parser. The input sequence for the parser is a part-of-speech tagged sentence. We used a trigram tagger [5] trained on a mixed corpus of technical articles and web documents, improved by a backup lexicon and additional rule-based modules. The chunker provides recognition of basic noun phrases, verb chains, and simple adverbial and adjectival phrases. It consists of several cascades and transforms the input sequence of tagged words to a sequence of tagged words and non-terminal tags. Simultaneously a parsing tree is built. In order to find the heads (main words) of chunks the output of the chunker is processed by the lexicalizer module. The lexicalizer performs “lexicalization” of non-terminal symbols: depending of the name of a symbol a set of rules is applied to retrieve the corresponding chunk head (we call it lexeme), which may be also canonized to a base form. As a result the sequence is updated: each non-terminal tag is extended with a lexeme. A set of rules in the form of regular expressions is maintained for the lexicalizer. The lexicalized parser module is very similar to the chunker except for it creates new non-terminal tags already with lexemes attached. Such lexemes are derived from the lexemes of the underlying parsing level. Fig. 1 illustrates the parsing process.

Input word sequence

The company offers innovative and comprehensive computer-based testing and Internet-based testing solutions

Tagged word sequence

The_DT company_NN offers_VB innovative_JJ and_CC comprehensive_JJ computer-based_JJ testing_NN and_CC Internet-based_JJ testing_NN solutions_NN

Parsing tree after the  chunker 

(NP The_DT company_NN) (VP offers_VB) (NP innovative_JJ and_CC comprehensive_JJ computer-based_JJ testing_NN) and_CC (NP Internet-based_JJ testing_NN solutions_NN)

Token sequence after the chunker 

NP VP NP and_CC NP

Token sequence after the lexicalizer

company_NP offer_VP testing_NP and_CC solution_NP

Parsing tree after the lexicalized parser  

(offer_SVO (company_NP The_DT company_NN) (offer_VP offers_VB) (testing_NP (testing_NP innovative_JJ and_CC comprehensive_JJ computer-based_JJ testing_NN) and_CC (solution_NP Internet-based_JJ testing_NN solutions_NN)))

Token sequence after the lexicalized parser

offer_SVO

Fig. 1. Parsing example

Additional modules

Unlike chunking, that may be effectively implemented via finite-state cascades, deeper parsing requires additional disambiguation means. We used statistically collected data to resolve prepositional phrase attachment (PPA) problem during the lexicalized parsing. A slightly modified classical unsupervised method [6] was used. Grammar rules are used to locate the ambiguity, and certain fragments of the input chain (verb, noun1, preposition and noun2) are taken and passed as arguments to the PPA disambiguation module. The module makes a decision, whether prepositional phrase is attached to the noun or to the verb. For example, if we have a sentence I saw a star with a telescope. The word telescope may be attached to the verb saw (saw with a telescope) or to the noun star (star with a telescope). PPA resolution module is called with four parameters: saw, star, with, and telescope. In this case the result will be the verb attachment. 
Along with the statistical module we also use WordNet [7-8] to resolve parsing ambiguities. WordNet module provides information about words in a hierarchical manner. There are several types of relations between words including kind of, part of, etc. For example, sofa is a kind of furniture, cat is a kind of animal, and finger is a part of hand. So, when parsing the sequence chair and sofa in room, there will be two options: to unite first chair and sofa or sofa in room into a noun group. In order to choose the first option we need to know if words chair and sofa are entities of the same kind. The information present in WordNet allows us to make the decision because sofa and chair are both a kind of furniture.
Using the statistical and semantic modules it is possible to successfully resolve parsing ambiguities and as a result provide a detailed parsing of a sentence. Due to finite-state technology the parser is fast and therefore may be used in many applications. Depending on the application the speed, the accuracy and the depth of analysis may be adjusted by controlling the number of rules and cascades. For example, for information retrieval purposes we may leave the chunker and few core rules that form noun groups on the lexicalized parser stage. For question answering we need deeper analysis, and therefore rules for recognizing verb chains, adverbial and adjectival phrases, their classes, as long as verb-object, subject-verb pairs, etc. are needed.
Results

Using the described scheme we have designed a parser of English. Below we provide the results on a limited corpus received for shallow parsing including noun, verb, adverbial, and adjectival phrase recognition. The main job here is performed by the chunker, which consists of 9 cascades with a total of about 300 rules. The lexicalized parser module has only few rules (about 25) for noun phrase recognition. The test corpus of about 1000 sentences (approximately 18.000 tokens) taken from technical articles was used to evaluate the parser. The numbers for small noun groups (without prepositions) and for long noun group (with prepositions) were taken separately. Table 1 summarizes the accuracy results. The average speed of processing was about 30.000 words per second on Celeron 2.4 GHz machine.
	Chunk 
	Precision, %
	Recall, %

	Noun phrase (small)
	99.32
	99.10

	Verb chain
	95.24
	97.56

	Noun phrase (long)
	92.85
	89.74

	Adverbial phrase
	80.77
	91.30

	Adjectival phrase
	88.24
	93.75


Table 1. Shallow parsing accuracy

Conclusion

We presented a hybrid system for natural language parsing. The system is based on finite-state cascades, and makes use of statistical and semantic modules, which are called by demand to resolve parsing ambiguities. Due to robustness the presented parser may be successfully used as a part of a larger language processing system.
1. R. Mitkov, ed. The Oxford Handbook of Computational Linguistics. Oxford University Press, 2003.
2. Steven Abney. Partial Parsing via Finite-State Cascades. In Proceedings of the ESSLLI '96 Robust Parsing Workshop, 1996.

3. Emmanuel Roche. Parsing with Finite State Transducers. In Roche and Schabes, 1997.

4. Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted Automata in Text and Speech Processing. In Proceedings of the 12th biennial European Conference on Artificial Intelligence (ECAI-96), Workshop on Extended finite state models of language. Budapest, Hungary, 1996. John Wiley and Sons, Chichester.

5. Thorsten Brants, 2000. TnT - A Statistical Part-of-Speech Tagger. In Proceedings of the Sixth Applied Natural Language Processing Conference ANLP-2000, Seattle, WA.
6. D. Hindle and M. Rooth. Structural ambiguity and lexical relations. Computational Linguistics, 19(1):103--120, 1993.

7. George A. Miller. Wordnet: a lexical database for English. Communications of the ACM, 38(11):39--41, 1995.

8. Christiane Fellbaum, ed. "WordNet: An Electronic Lexical Database". MIT Press, Cambridge, MA, 1998.
